

SCTF Teletalk - Feb 15, 2012

Multi- λ analysis of Betelgeuse's CO \rightarrow SOFIA-GREAT, CARMA, Gemini-S, HST

Graham M. Harper Astrophysics Research Group, School of Physics Trinity College, Dublin (Ireland)

Outline

- Mass loss in the Hertzsprung-Russell Diagram
- Betelgeuse as a key to help understand mass loss
- Circumstellar signatures of ¹²C¹⁶O ¹³CO¹⁶O
- Why GREAT on NASA-SOFIA?

Cohorts for CO project

- Electronic Transitions: Hubble Space Telescope (GHRS, STIS)
 - Kenneth Carpenter (GSFC)
 - Tom Ayres (CU Boulder)
- Vibrational Transitions: Phoenix Gemini
 - Nils Ryde (Lund Observatory, Sweden)
- Rotational Transitions low-J: CARMA
 - Alex Brown (CU Boulder) & Joanna Brown (CfA)
 - Eamon O'Gorman (Trinity College, PhD student)
 - Seth Redfield (Wesleyan University)
- Rotational Transitions high-J: SOFIA (GREAT)
 - Matthew Richter (UC Davis)
 - Goran Sandell (USRA)
 - Sarah Kennelly (Trinity College, PhD student)

Mass loss in the Hertzsprung-Russell Diagram

VASA Observatorium

Vitals - Betelgeuse

Spectral Type	Red Supergiant M2 lab	
Surface Temperature	3600 K (cool star)	
Log(L/Lsol)	5.12	
Distance	197 +/- 45 parsec (pc) 640 Light Years	
Mass (Birth)	~20 M(sun)	
Mass (Now)	~18 M(sun)	
Mass Loss Rate	3x10 ⁻⁶ M(sun)/yr (current)	
Wind speed V_w	9, 16 kms ⁻¹ (current, old)	
Age	~10 Myr	
Origin	O-type (hot) main-sequence Runaway Star	
Fate	Supernova Type II	

Betelgeuse – not enough dust for wind?

Image Credit: VLT/Visier mid-IR camera.

Dust

ESO/P. Kervella

CO Molecule $X^{-1}\Sigma_0^+$

$$E = BJ(J+1) + hv_{vib}(v+1/2) + hv_{ele}$$

- Rotation: $\Delta E = 5.5J$ (K) for J->J-1
- n_{crit}~ 1000 cm⁻³ (low-J rotational)
- Vibration: ΔE ~ Δv x 3100 K
- Electronic: ΔE ~ 90,000 K

Bernat et al. 1979, ApJ, 233, L135

$$^{12}C/^{13}C \sim 7$$

Same as photosphere

Line-of-sight only!

Bernat et al. 1981, ApJ, 246, 184

Star	Component (km s ⁻¹)	Т (К)	$\frac{N(\text{CO})/v(\text{Dop})}{(\text{cm}^{-2} \text{ km}^{-1} \text{ s})}$	N(H) (cm ⁻²)	$N(\text{Dust})^{d}$ (cm ⁻²)
119 Tau	-9	200 ± 150	7.5+15	3.4+21 ^a	
μ Сер	- 8	100 ± 10	7.5 + 15	7.3+21 ^b	
	-13	270 ± 60	2.0 + 16		
	-19	100 ± 15	1.8 + 16		$4.0 \pm 21^{\circ}$
	-38	60 ± 4	1.1 + 17		
	-47	100 ± 40	3.0 + 15		
β Peg	-6	90 ± 30	1.3 + 16	$2.7 + 20^{a}$	
ρ Per	-2	90 ± 20	6.5 + 15	$2.7 + 20^{a}$	
α Her	-13	250 ± 60	4.2 + 16	6.6 ± 21^{b}	$2.0 + 20^{\circ}$
	-25	550 ± 670	6.7 + 15		
SW Vir	-6	130 ± 20	2.9 + 16		
	-9	130 ± 15	2.3 + 16		
X Her	-8	110 ± 20	4.3 + 16	$2.5 + 20^{\circ}$	$4.0 + 21^{\circ}$
W Hya	-5	300 ± 90	4.8 + 16	$< 2.5 + 20^{\circ}$	$6.0 + 21^{\circ}$
	-13	120 ± 20	3.7+15		

Multiple shells found around evolved M stars

Electronic Fourth Positive System: HST/GHRS

S1 and S2 shells similar to that needed to form UV spectrum

Wahlgren et al. 1992, CS7, ASP Conf. Ser. 26, 37.

SCTF Teletalk Feb 15, 2012

Electronic Fourth Positive System: HST/STIS-E140M

This is smoothed – and spikes are real!

Absorption is line-ofsight. Emission is global

Tom Ayres HST Cycle 18 "ASTRAL" project 146 orbits

SCTF Teletalk Feb 15, 2012

(1,0) band head: HST/GHRS

Fig. 2. The observed spectrum (solid) is compared against the best fit slab model (dashed) for, top to bottom, ${}^{12}C/{}^{13}C = 89$, 20, and 10.

Detail reveals by HST/STIS: (1-0) Band

SCTF Teletalk Feb 15, 2012

Riddle of the beams size $\tau < 1$

Single Dish: Riddle of the line profiles

Huggins, 1987, ApJ, 313, 400, Huggins et al 1994, ApJ, 424, L127

Rotational Transitions: CARMA

CARMA Observations

Date	Config	Tracks	Time (hr)	Resolution (")	Max Scale (")
Jun 07	D	5	9.5	1.8	24.4
Jul 09	E	1	3.25	4.0	33.5
Nov 09	С	5	8.75	0.8	8.9

<u>3 separate bands: All</u> <u>centered on line</u>

(1) Maximum bandwidth of 468 MHz (15 channels)

(1) 62 MHz of bandwidth across 63 channels (1 MHz or 1.3 km s⁻¹ resolution)

(1) 31 MHz of bandwidth across 63 channels (0.5 MHz or 0.65 km s⁻¹ resolution)

Results: Combined Configurations

Results: Combined Configurations

YERAC - 18th July 2011

Results: Combined Configurations C,D&E configs

YERAC - 18th July 2011

ISO High-J CO rotational lines

Figure 1. A portion of the background-subtracted and continuumsubtracted LWS spectrum of α Ori. The smooth curve shows Gaussian fits to the observed lines of [O I] and [C II] at 145.5 and 157.7 μ m and to the J = 18-17, 17-16 and 16-15 rotational lines of CO at 144.8, 153.3 and 162.8 μ m. M. J. Barlow, 1999, IAUS 191, 353

(obtained 2 days before the end of ISO mission)

SOFIA 747-SP (43,000 feet)

MASA

A

Clipper Lindbergh

10-

...

000

German REceiver for Astronomy at Terahertz Frequencies PI Dr. Rolf Güsten (Max-Planck-Institut für Radioastronomie, Bonn)

Observe high-J CO rotational lines J>11

.....

SOFIA STRATOSPHERIC OBSERVATORY

100,000 kg fuel Astrophysics is expensive science! Line profile is narrow indicative of the S1 high excitation component

Star-in-Box Simulations (B. Freytag)

Wave-driven winds?

For wave-driven winds ... (wave energy flux = F_{wind})

- $F_{wind} \sim C\rho < v^2 > v_{prop}$
- C ~ O(1)
- <v>~11 kms⁻¹
- ρ (density) from model
- v_{prop}= 5-10 kms⁻¹
- Alfvén, Fast-MHD $v_{prop} = B/\sqrt{4\pi\rho}$
- B ~ 1-10 Gauss
- Wave damping must be different
 - geometry (diverging)
 - damping rates (magⁿs)

Bernd Freytag: star-in-a-box 3D RH. S. Bertil Dorch (2004 A&A, 423,1101)

Atacama Large Millimeter Array (ALMA)

- 5000m Chajnantor plain of the Chilean Andes
- 54 @12m + 12 @ 7m antennae
- 100-950 GHz (0.3 -0.03 cm)
- Max baseline 16 km = spatial resolution ~8 mas
- Resolve chromosphere at 5x higher resolution
 - 10 beams across photosphere

Thank you for listening

